Growth and Products of Subharmonic Functions in the Unit Ball

نویسنده

  • R. SUPPER
چکیده

The purpose of this paper is to link informations on the application u 7→ gu with some growth conditions on the functions u and g subharmonic in the unit ball of R . Two kinds of growth are considered: the Bloch–type growth and growth conditions expressed through integrals involving involutions of the unit ball.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication of Subharmonic Functions

We study subharmonic functions in the unit ball of R , with either a Bloch–type growth or a growth described through integral conditions involving some involutions of the ball. Considering mappings u 7→ gu between sets of functions with a prescribed growth, we study how the choice of these sets is related to the growth of the function g.

متن کامل

SOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK

We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.

متن کامل

On an Inequality Related to the Radial Growth of Subharmonic Functions

It is a classical result that every subharmonic function, defined and L p-integrable for some p, 0 < p < +∞, on the unit disk D of the complex plane C is for almost all θ of the form o((1− |z|)−1/p), uniformly as z → eiθ in any Stolz domain. Recently Pavlović gave a related integral inequality for absolute values of harmonic functions, also defined on the unit disk in the complex plane. We gene...

متن کامل

Growth and Asymptotic Sets of Subharmonic Functions Ii

We study the relation between the growth of a subharmonic function in the half space R + and the size of its asymptotic set. In particular, we prove that for any n ≥ 1 and 0 < α ≤ n, there exists a subharmonic function u in the R + satisfying the growth condition of order α : u(x) ≤ x−α n+1 for 0 < xn+1 < 1, such that the Hausdorff dimension of the asymptotic set ⋃ λ6=−∞ A(λ) is exactly n−α. He...

متن کامل

A Generalized Mean Value Inequality for Subharmonic Functions and Applications

If u ≥ 0 is subharmonic on a domain Ω in Rn and p > 0, then it is well-known that there is a constant C(n, p) ≥ 1 such that u(x)p ≤C(n, p)M V (up,B(x,r)) for each ball B(x,r) ⊂ Ω. We recently showed that a similar result holds more generally for functions of the form ψ◦ u where ψ : R+ → R+ may be any surjective, concave function whose inverse ψ−1 satisfies the ∆2-condition. Now we point out tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012